什么是P问题、NP问题和NPC问题
2015-11-13 17:21:22

4 Answers

NP问题就是指其解的正确性可以在多项式时间内被检查的一类问题。比如说数组求和,得到一个解,这个解对不对呢,显然是可以在多项式时间内验证的。再比如说SAT,如果得到一个解,也是能在多项式时间内验证正确性的。所以SAT和求和等等都是NP问题。然后呢,有一部分NP问题的解已经可以在多项式时间内找到,比如数组求和,这部分问题就是NP中比较简单的一部分,被命名为P类问题。那么P以外的NP问题,就是目前还不能够在多项式时间内求解的问题了。会不会将来某一天,有大牛发明了牛算法,把这些问题都在多项式时间内解决呢?也就是说,会不会所有的NP问题,其实都是P类问题呢,只是人类尚未发现呢?NP=P吗?


可想而知,证明NP=P的路途是艰难的,因为NP问题实在太多了,要一一找到多项式算法。这时Stephen A. Cook这位大牛出现了,写了一篇The Complexity of Theorem Proving Procedures,提出了一个NP-complete的概念。NPC指的是NP问题中最难的一部分问题,所有的NP问题都能在多项式时间内归约到NPC上。所谓归约是指,若A归约到B,B很容易解决,则A很容易解决。显然,如果有任何一道NPC问题在多项式时间内解决了,那么所有的NP问题就都成了P类问题,NP=P就得到证明了,这极大的简化了证明过程。那么怎样证明一个问题C是NP完全问题呢?首先,要证明C是NP问题,也就是C的解的正确性容易验证;然后要证明有一个NP完全问题B,能够在多项式时间内归约到C。这就要求必须先存在至少一个NPC问题。这时Cook大牛就在1971年证明了NP完全问题的祖先就是SAT。SAT问题是指给定一个包含n个布尔变量的逻辑式,问是否存在一个取值组合,使得该式被满足。Cook证明了SAT是一个NPC问题,如果SAT容易解决,那么所有NP都容易解决。Cook是怎样做到的呢?


他通过非确定性图灵机做到的。非确定性图灵机是一类特殊的图灵机,这种机器很会猜,只要问题有一个解,它就能够在多项式时间内猜到。Cook证明了,SAT总结了该机器在计算过程中必须满足的所有约束条件,任何一个NP问题在这种机器上的计算过程,都可以描述成一个SAT问题。所以,如果你能有一个解决SAT的好算法,你就能够解决非确定性图灵机的计算问题,因为NP问题在非图机上都是多项式解决的,所以你解决了SAT,就能解决所有NP,因此——SAT是一个NP完全问题。感谢Cook,我们已经有了一个NPC问题,剩下的就好办了,用归约来证明就可以了。目前人们已经发现了成千上万的NPC问题,解决一个,NP=P就得证,可以得千年大奖(我认为还能立刻获得图灵奖)。


那么肯定有人要问了,那么NP之外,还有一些连验证解都不能多项式解决的问题呢。这部分问题,就算是NP=P,都不一定能多项式解决,被命名为NP-hard问题。NP-hard太难了,怎样找到一个完美的女朋友就是NP-hard问题。一个NP-hard问题,可以被一个NP完全问题归约到,也就是说,如果有一个NP-hard得到解决,那么所有NP也就都得到解决了。


NP-Hard和NP-Complete 区别


对NP-Hard问题和NP-Complete问题的一个直观的理解就是指那些很难(很可能是不可能)找到多项式时间算法的问题. 因此一般初学算法的人都会问这样一个问题: NP-Hard和NP-Complete有什么不同? 简单的回答是根据定义, 如果所有NP问题都可以多项式归约到问题A, 那么问题A就是NP-Hard; 如果问题A既是NP-Hard又是NP, 那么它就是NP-Complete. 从定义我们很容易看出, NP-Hard问题类包含了NP-Complete类. 但进一步的我们会问, 是否有属于NP-Hard但不属于NP-Complete的问题呢? 答案是肯定的. 例如停机问题, 也即给出一个程序和输入, 判定它的运行是否会终止. 停机问题是不可判的, 那它当然也不是NP问题. 但对于SAT这样的NP-Complete问题, 却可以多项式归约到停机问题. 因为我们可以构造程序A, 该程序对输入的公式穷举其变量的所有赋值, 如果存在赋值使其为真, 则停机, 否则进入无限循环. 这样, 判断公式是否可满足便转化为判断以公式为输入的程序A是否停机. 所以, 停机问题是NP-Hard而不是NP-Complete.

2015-11-13 17:35:21
These refer to how long it takes a program to run.  Problems in class P can be solved with algorithms that run in polynomial time.

Say you have an algorithm that finds the smallest integer in an array.  One way to do this is by iterating over all the integers of the array and keeping track of the smallest number you've seen up to that point.  Every time you look at an element, you compare it to the current minimum, and if it's smaller, you update the minimum.

How long does this take?  Let's say there are n elements in the array.  For every element the algorithm has to perform a constant number of operations.  Therefore we can say that the algorithm runs in O(n) time, or that the runtime is a linear function of how many elements are in the array.*  So this algorithm runs in linear time.

You can also have algorithms that run in quadratic time (O(n^2)), exponential time (O(2^n)), or even logarithmic time (O(log n)).  Binary search (on a balanced tree) runs in logarithmic time because the height of the binary search tree is a logarithmic function of the number of elements in the tree.

If the running time is some polynomial function of the size of the input**, for instance if the algorithm runs in linear time or quadratic time or cubic time, then we say the algorithm runs in polynomial time and the problem it solves is in class P.


NP

Now there are a lot of programs that don't (necessarily) run in polynomial time on a regular computer, but do run in polynomial time on a nondeterministic Turing machine.  These programs solve problems in NP, which stands fornondeterministic polynomial time.  A nondeterministic Turing machine can do everything a regular computer can and more.***  This means all problems in P are also in NP.

An equivalent way to define NP is by pointing to the problems that can be verified in polynomial time.  This means there is not necessarily a polynomial-time way to find a solution, but once you have a solution it only takes polynomial time to verify that it is correct.

Some people think P = NP, which means any problem that can be verified in polynomial time can also be solved in polynomial time and vice versa.  If they could prove this, it would revolutionize computer science because people would be able to construct faster algorithms for a lot of important problems.


NP-hard

What does NP-hard mean?  A lot of times you can solve a problem by reducing it to a different problem.  I can reduce Problem B to Problem A if, given a solution to Problem A, I can easily construct a solution to Problem B.  (In this case, "easily" means "in polynomial time.")

If a problem is NP-hard, this means I can reduce any problem in NP to that problem.  This means if I can solve that problem, I can easily solve any problem in NP.  If we could solve an NP-hard problem in polynomial time, this would prove P = NP.


NP-complete

A problem is NP-complete if the problem is both
  • NP-hard, and
  • in NP. 
2015-11-13 17:25:22

 P类问题的概念:如果一个问题可以找到一个能在多项式的时间里解决它的算法,那么这个问题就属于P问题。 

NP就是Non-deterministic Polynomial的问题,也即是多项式复杂程度的非确定性问题。

NP问题不是非P类问题。  

NP问题是指可以在多项式的时间里验证一个解的问题。NP问题的另一个定义是,可以在多项式的时间里猜出一个解的问题。 

所有非确定多项式问题的集合用NP表示.很显然所有的P类问题都是NP问题。  

Cook 在1971年给出并证明了有一类问题具有下述性质:

(1)这类问题中任何一个问题至今未找到多项式时间算法;

(2)如果这类问题中存在一个问题有多项式时间算法,则这类问题都有多项式时间算法 

这类问题就是所谓的NP完全问题。 

NP完全问题:如果任何一个NP问题都能通过一个多项式时间算法转换为某个NP问题,那么这个NP问题就称为NP完全问题。 NPC问题的定义非常简单。同时满足下面两个条件的问题就是NPC问题。首先,它得是一个NP问题;然后,所有的NP问题都可以约化到它。 

一个问题A可以约化为问题B的含义即是,可以用问题B的解法解决问题A,或者说,问题A可以“变成”问题B。 

2015-11-13 17:23:43
  下文即将介绍逻辑电路问题。这是第一个NPC问题。其它的NPC问题都是由这个问题约化而来的。因此,逻辑电路问题是NPC类问题的“鼻祖”。
    逻辑电路问题是指的这样一个问题:给定一个逻辑电路,问是否存在一种输入使输出为True。
    什么叫做逻辑电路呢?一个逻辑电路由若干个输入,一个输出,若干“逻辑门”和密密麻麻的线组成。看下面一例,不需要解释你马上就明白了。
  ┌───┐
  │ 输入1├─→┐    ┌──┐
  └───┘    └─→┤    │
                      │ or ├→─┐
  ┌───┐    ┌─→┤    │    │    ┌──┐
  │ 输入2├─→┤    └──┘    └─→┤    │
 &
nbsp;└───┘    │                ┌─→┤AND ├──→输出
                └────────┘┌→┤    │
  ┌───┐    ┌──┐            │  └──┘
  │ 输入3├─→┤ NOT├─→────┘
  └───┘    └──┘

    这是个较简单的逻辑电路,当输入1、输入2、输入3分别为True、True、False或False、True、False时,输出为True。
    有输出无论如何都不可能为True的逻辑电路吗?有。下面就是一个简单的例子。
  ┌───┐
  │输入1 ├→─┐    ┌──┐
  └───┘    └─→┤    │
                      │AND ├─→┐
                ┌─→┤    │    │
                │    └──┘    │  ┌──┐
                │                └→┤    │
  ┌───┐    │                    │AND ├─→输出
  │输入2 ├→─┤  ┌──┐      ┌→┤    │
  └───┘    └→┤NOT ├→──┘  └──┘
                    └──┘

    上面这个逻辑电路中,无论输入是什么,输出都是False。我们就说,这个逻辑电路不存在使输出为True的一组输入。
2015-11-13 17:23:38
您不能回答该问题或者回答已经关闭!

相关文章推荐

  • C#开发中的反射机制

    反射的定义:审查元数据并收集关于它的类型信息的能力。元数据(编译以后的最基本数据单元)就是一大堆的表,当编译程序集或者模块时,编译器会创建一个类定义表,一个字段定义表,和一个方法定义表等

  • C#实例解析适配器设计模式

    将一个类的接口变成客户端所期待的另一种接口,从而使原本因接口不匹配而无法在一起工作的两个类能够一起工作

  • C#中using指令的几种用法

    using + 命名空间名字,这样可以在程序中直接用命令空间中的类型,而不必指定类型的详细命名空间,类似于Java的import,这个功能也是最常用的,几乎每个cs的程序都会用到

  • C#协变和逆变

    “协变”是指能够使用与原始指定的派生类型相比,派生程度更大的类型,“逆变”则是指能够使用派生程度更小的类型

  • C#运行时相互关系

    C#运行时相互关系,包括运行时类型、对象、线程栈和托管堆之间的相互关系,静态方法、实例方法和虚方法的区别等等

  • 使用托管C++粘合C#和C++代码(二)

    本文实现一下C++代码调用C#代码的过程。我构造一个简单并且直观的例子:通过C++ UI 触发C# UI.

  • C#开发高性能Log Help类设计开发

    项目中要在操作数据库的异常处理中加入写Log日志,对于商业上有要求,写log时对其它操作尽可能影响小,不能因为加入log导致耗时太多

  • C#中的索引器的简单理解和用法

    C#中的类成员可以是任意类型,包括数组和集合。当一个类包含了数组和集合成员时,索引器将大大简化对数组或集合成员的存取操作

  • Async和Await使异步编程更简单

    C#5.0中async和await两个关键字,这两个关键字简化了异步编程,之所以简化了,还是因为编译器给我们做了更多的工作

  • 使用托管C++粘合C#和C++代码(一)

    C#在xml读写,数据库操纵,界面构造等很多方面性能卓越;C++的效率高,是底层开发的必备武器

  • C#基础概念之延迟加载

    延迟加载(lazy load)是Hibernate3关联关系对象默认的加载方式,延迟加载机制是为了避免一些无谓的性能开销而提出来的,所谓延迟加载就是当在真正需要数据的时候,才真正执行数据加载操作

  • 深入C# 序列化(Serialize)、反序列化(Deserialize)

    C#中的序列化和反序列化,序列化是.NET运行时环境用来支持用户定义类型的流化的机制